© 2020 WFAE
90.7 Charlotte 93.7 Southern Pines 90.3 Hickory 106.1 Laurinburg
Play Live Radio
Next Up:
0:00
0:00
Available On Air Stations

Scientists Demonstrate Leaner System For Quantum Encryption

Navajo encryption boxes seen at right in 2003 employ principles of quantum physics. The latest research has shown the ability to run larger networks with less such hardware.
Navajo encryption boxes seen at right in 2003 employ principles of quantum physics. The latest research has shown the ability to run larger networks with less such hardware.

Scientists have demonstrated the ability to scale-up an 'uncrackable' computer encryption system that utilizes quantum physics to ensure security.

The technique is based on information that is carried by photons, the basic particles of light. While it's been demonstrated on a small scale, the team headed by Andrew Shields and publishing in Nature says they've shown that up to 64 users can share a single photon detector, eliminating the need for each one to have such an (expensive) device.

It's part of a burgeoning technology known as Quantum Key Distribution, or QKD, that works off the principle that a quantum system cannot be observed without being disrupted — thus revealing that encrypted information has been compromised.

We don't claim to really understand all this stuff, but others do. As PhsyOrg writes:

"Due to fundamental principles of quantum mechanics, an eavesdropper trying to learn the secret key would inevitably change it, thereby alerting the communicating parties about the intrusion. In this case, the key would be discarded."

In the Nature abstract, the team writes that the "point-to-point architecture removes one of the main obstacles restricting the widespread application of QKD. It presents a viable method for realizing multi-user QKD networks with efficient use of resources, and brings QKD closer to becoming a widespread technology."

Tech World says:

"If it sounds like a mundane advance, as far as today's quantum cryptography (or Quantum key distribution) technology is concerned it is anything but.

Conventional optical networks are highly efficient because they work on the principle of a shared infrastructure that can handle numerous data streams and many users at once without complication. To date, QKD systems have had to set up a single point-to-point link for every connection, requiring duplicate photon detectors for every user wanting to receive a message."

Copyright 2020 NPR. To see more, visit https://www.npr.org.

We Need Your Help Now More Than Ever

WFAE mask

Our newsroom is hard at work covering everything from the ongoing coronavirus pandemic to the aftermath of the election, the race for a vaccine and our communities' fight to rebuild. But we can't do it without you. Support our local journalism with a donation of ANY amount, and we’ll send you a free WFAE member mask courtesy of AllDayMask.com of Monroe.